Alfa Computer : Jl Raya Watudandang Prambon Nganjuk (1/3an SMPN 1 Prambon)

Minggu, 10 Juni 2012

minyak bumi


MINYAK BUMI

Komposisi Minyak Bumi
Minyak bumi adalah campuran komplek hidrokarbon plus senyawaan organik dari Sulfur, Oksigen, Nitrogen dan senyawa – senyawa yang mengandung konstituen logam terutama Nikel, Besi dan Tembaga.
Minyak bumi sendiri bukan merupakan bahan yang uniform, melainkan berkomposisi yang sangat bervariasi, tergantung pada lokasi, umur lapangan minyak dan juga kedalaman sumur.
Dalam minyak bumi parafinik ringan mengandung hidrokarbon tidak kurang dari 97 % sedangkan dalam jenis asphaltik berat paling rendah 50 %.
Komponen Hidrokarbon
Perbandingan unsur – unsur yang terdapat dalam minyak bumi sangat bervariasi. Berdasarkan atas hasil analisa, diperoleh data sebagai berikut :
  • Karbon    : 83,0 – 87,0 %
  • Hidrogen  : 10,0 – 14,0 %
  • Nitrogen  :  0,1 – 2,0 %
  • Oksigen   :  0,05 – 1,5 %
  • Sulfur      :  0,05 – 6,0 %
Komponen hidrokarbon dalam minyak bumi diklasifikasikan atas tiga golongan, yaitu :
  • golongan parafinik 
  • golongan naphthenik 
  • golongan aromatik
  • sedangkan golongan olefinik umumnya tidak ditemukan dalam crude oil, demikian juga hidrokarbon asetilenik sangat jarang.
Crude oil mengandung sejumlah senyawaan non hidrokarbon, terutama senyawaan Sulfur, senyawaan Nitrogen, senyawaan Oksigen, senyawaan Organo Metalik (dalam jumlah kecil/trace sebagai larutan) dan garam – garam anorganik (sebagai suspensi koloidal). 
  1. Senyawaan Sulfur
    Crude oil yang densitynya lebih tinggi mempunyai kandungan Sulfur yang lebih tinggu pula. Keberadaan Sulfur dalam minyak bumi sering banyak menimbulkan akibat, misalnya dalam gasoline dapat menyebabkan korosi (khususnya dalam keadaan dingin atau berair), karena terbentuknya asam yang dihasilkan dari oksida sulfur (sebagai hasil pembakaran gasoline) dan air.
  2. Senyawaan Oksigen
    Kandungan total oksigen dalam minyak bumi adalah kurang dari 2 % dan menaik dengan naiknya titik didih fraksi. Kandungan oksigen bisa menaik apabila produk itu lama berhubungan dengan udara. Oksigen dalam minyak bumi berada dalam bentuk ikatan sebagai asam karboksilat, keton, ester, eter, anhidrida, senyawa monosiklo dan disiklo dan phenol. Sebagai asam karboksilat berupa asam Naphthenat (asam alisiklik) dan asam alifatik. 
  3. Senyawaan Nitrogen
    Umumnya kandungan nitrogen dalam minyak bumi sangat rendah, yaitu 0,1 – 0,9 %. Kandungan tertinggi terdapat pada tipe Asphalitik. Nitrogen mempunyai sifat racun terhadap katalis dan dapat membentuk gum / getah pada fuel oil. Kandungan nitrogen terbanyak terdapat pada fraksi titik didih tinggi. Nitrogen klas dasar yang mempunyai berat molekul yang relatif rendah dapat diekstrak dengan asam mineral encer, sedangkan yang mempunyai berat molekul yang tinggi tidak dapat diekstrak dengan asam mineral encer. 
  4. Konstituen Metalik
    Logam – logam seperti besi, tembaga, terutama nikel dan vanadium pada proses catalytic cracking mempengaruhi aktifitas katalis, sebab dapat menurunkan produk gasoline, menghasilkan banyak gas dan pembentukkan coke. Pada power generator  temperatur tinggi, misalnya oil – fired gas turbine, adanya konstituen logam terutama vanadium dapat membentuk kerak pada rotor turbine. Abu yang dihasilkan dari pembakaran fuel yang mengandung natrium dan terutama vanadium dapat bereaksi dengan refactory furnace (bata tahan api), menyebabkan turunnya titik lebur campuran sehingga merusakkan refractory itu.
Agar dapat diolah menjadi produk-produknya, minyak bumi dari sumur diangkut ke Kilang menggunakan kapal, pipa, mobil tanki atau kereta api. Didalam Kilang, minyak bumi diolah menjadi produk yang kita kenal secara fisika berdasarkan trayek titik didihnya (distilasi), dimana gas berada pada puncak kolom fraksinasi dan residu (aspal) berada pada dasar kolom fraksinasi. Tentang pengolahan minyak bumi menjadi produk-produk yang kita ketahui di pasaran dari dalam kilang akan dibahas secara khusus nanti.
Setiap trayek titik didih disebut “Fraksi”, misal :
0 – 50°C       : Gas
50 – 85°C     : Gasoline
85 – 105°C   : Kerosin
105 – 135°C : Solar
> 135°C       : Residu (Umpan proses lebih lanjut)


Fraksi Minyak Bumi

Minyak mentah ( crude oil ) sebagian besar tersusun dari senyawa-senyawa hidrokarbon jenuh (alkana). Adapun hidrokarbon tak jenuh (alkena, alkuna dan alkadiena) sangat sedikit dkandung oleh minyak bumi, sebab mudah mengalami adisi menjadi alkana.
Oleh karena minyak bumi berasl dari fosil organisme, mak minyak bumi mengandung senyawa-senyawa belerang (0,1 sampai 7%), nitrogen (0,01 sampai 0,9%), oksigen (0,6-0,4%) dan senyawa logam dalam jumlah yang sanagt kecil. Minyak mentah dipisahkan menjadi sejumlah fraksi-fraksi melalui proses destilasi (penyulingan).
Pemisahan minyak mentah ke dalam komponen-komponen murni (senyawa tunggal) tidak mungkin dilakukan dan juga tidak prakstis sebab terlalu banyak senyawa yang ada dalam minyak tersebut dan senyawa hidrokarbon memiliki isomer-isomer dengan titik didih yang berdekatan. Fraksi-fraksi yang diperoleh dari destilasi minyak bumi adalah campuran hidrokarbon yang mendidih pada trayek suhu tertentu. Misalnya fraksi minyak tanah (kerosin) tersusun dari campuran senyawa-senyawa yang mendidih antar 180 0 C-250 0 C. Proses destilasi dikerjakan dengan menggunakan kolom atau menara destilasi .
Proses pertama dalam pemrosesan minyak bumi adalah fraksionasi dari minyak mentah dengan menggunakan proses destilasi bertingkat, adapun hasil yang diperoleh adalah sebagai berikut:
Sisa :
  1. Minyak bisa menguap : minyak-minyak pelumas, lilin, parafin, dan vaselin.
  2. Bahan yang tidak bisa menguap : aspal dan arang minyak bumi
Kegunaan Minyak Bumi berdasarkan fraksinya adalah sebagai berikut:



Dampak Pembakaran Bahan Bakar

-Dampak terhadap lingkungan
Dampak lingkungan yang ditimbulkan oleh sistem transportasi yang tidak "sustainable" dapat dibagi dalam 2 kelompok besar yaitu dampak terhadap lingkungan udara dan dampak terhadap lingkungan air.

Kualitas udara perkotaan sangat menurun akibat tingginya aktivitas transportasi. Dampak yang timbul meliputi meningkatnya konsentrasi pencemar konservatif yang meliputi: · Karbon monoksida (CO) · Oksida sulfur (SOx) · Oksida nitrogen (NOx) · Hidrokarbon (HC) · Timbal (Pb) · Ozon perkotaan (O3) · Partikulat (debu) Perubahan kualitas udara perkotaan telah diamati secara menerus di beberapa kota baik oleh Bapedalda maupun oleh BMG.

Secara tidak langsung, kegiatan transportasi akan memberikan dampak terhadap lingkungan air terutama melalui air buangan dari jalan raya. Air yang terbuang dari jalan raya, terutama terbawa oleh air hujan, akan mengandung bocoran bahan bakar dan juga larutan dari pencemar udara yang tercampur dengan air tersebut.

-Dampak terhadap kesehatan
Dampak terhadap kesehatan merupakan dampak lanjutan dari dampak terhadap lingkungan udara. Tingginya kadar timbal dalam udara perkotaan telah mengakibatkan tingginya kadar timbal dalam darah.

-Dampak terhadap ekonomi
Dampak terhadap ekonomi lebih banyak merupakan dampak turunan terutama dari adanya dampak terhadap kesehatan. Dampak terhadap ekonomi akan semakin bertambah dengan terjadinya kemacetan dan tingginya waktu yang dihabiskan dalam perjalanan sehari-hari. Akibat dari tingginya kemacetan dan waktu yang dihabiskan di perjalanan, maka waktu kerja semakin menurun dan akibatnya produktivitas juga berkurang.
Polusi Udara Akibat Pembakaran Bahan Bakar Fosil

1. Sumber Bahan Pencemaran
a. Pembakaran Tidak Sempurna
Menghasilkan asap yang mengandung gas karbon monoksida (CO), partikel karbon (jelaga), dan sisa bahan bakar (hidroksida).
b. Pengotor dalam Bahan Bakar
Bahan bakar fosil mengandung sedikit belerang yang akan menghasilkan oksida belerang (SO2 atau SO3).
c. Bahan Aditif (Tambahan) dalam Bahan Bakar
Bensin yang ditambahi tetraethyllead (TEL) yang punya rumus molekul Pb(C2H5)4 akan menghasilkan partikel timah hitam berupa PbBr2.

2. Asap Buang Kendaraan Bermotor
a. Gas Karbon Dioksida (CO2)
Sebenarnya, gas karbon dioksida tidak berbahaya. Tetapi, gas karbon dioksida tergolong gas rumah kaca, sehingga peningkatan kadar gas karbon dioksida di udara dapat mengakibatkan peningkatan suhu permukaan bumi yang disebut pemanasan global.
b. Gas Karbon Monoksida (CO)
Gas karbon monoksida tidak berwarna dan berbau, sehingga kehadirannya tidak diketahui. Gas karbon monoksida bersifat racun, dapat menimbulkan rasa sakit pada mata, saluran pernapasan, dan paru-paru. Bila masuk ke dalam darah melalui pernapasan, gas karbon monoksida bereaksi dengan hemoglobin darah, membentuk karboksihemoglobin (COHb).
CO + Hb → COHb
Hemoglobin seharusnya bereaksi dengan oksigen menjadi oksihemoglobin (O2Hb) dan dibawa ke sel-sel jaringan tubuh yang memerlukan.
O2 + Hb → O2Hb
Namun, afinitas gas karbon monoksida terhadap hemoglobin sekitar 300 kali lebih besar daripada oksigen. Bahkan hemoglobin yang telah mengikat oksigen dapat diserang oleh gas karbon monoksida.
CO + O2Hb → COHb + O2
Jadi, gas karbon monoksida menghalangi fungsi vital hemoglobin untuk membawa oksigen bagi tubuh.
Cara mencegah peningkatan gas karbon monoksida di udara adalah dengan mengurangi penggunaan kendaraan bermotor dan pemasangan pengubah katalitik pada knalpot.
c. Oksida Belerang (SO2 dan SO3)
Belerang dioksida yang terhisap pernapasan bereaksi dengan air di dalam saluran pernapasan, membentuk asam sulfit yang dapat merusak jaringan dan menimbulkan rasa sakit. Bila SO3 terhisap, yang terbentuk adalah asam sulfat (lebih berbahaya). Oksida belerang dapat larut dalam air hujan dan menyebabkan terjadi hujan asam.
d. Oksida Nitrogen (NO dan NO2)
Campuran NO dan NO2 sebagai pencemar udara biasa ditandai dengan lambang NOx. Ambang batas NOx di udara adalah 0,05 ppm. NOx di udara tidak beracun (secara langsung) pada manusia, tetapi NOx ini bereaksi dengan bahan-bahan pencemar lain dan menimbulkan fenomena asbut (asap-kabut). Asbut menyebabkan berkurangnya daya pandang, iritasi pada mata dan saluran pernapasan, menjadikan tanaman layu, dan menurunkan kualitas materi.
e. Partikel Timah Hitam
Senyawa timbel dari udara dapat mengendap pada tanaman sehingga bahan makanan terkontaminasi. Keracunan timbel yang ringan dapat menyebabkan gejala keracunan timbel, seperti sakit kepala, mudah teriritasi, mudah lelah, dan depresi. Keracunan yang lebih hebat menyebabkan kerusakan otak, ginjal, dan hati.

3. Pengubah Katalitik
Salah satu cara untuk mengurangi bahan pencemar yang berasal dari asap kendaraan bermotor adalah memasang pengubah katalitik pada knalpot kendaraan. Pengubah katalitik berupa silinder dari baja tahan karat yang berisi suatu struktur berbentuk sarang lebah yang dilapisi katalis (biasanya platina). Pada separuh bagian pertama dari pengubah katalitik, karbon monoksida bereaksi dengan nitrogen monoksida membentuk karbon dioksida dan gas nitrogen.
katalis
2CO(g) + 2NO(g) → 2CO2(g) + N2(g)
gas-gas racun gas tak beracun
Pada bagian berikutnya, hidrokarbon dan karbon monoksida (jika masih ada) dioksidasi membentuk karbon dioksida dan uap air.
Pengubah katalitik hanya dapat berfungsi jika kendaraan menggunakan bensin tanpa timbel.

4. Efek Rumah Kaca
Berbagai gas dalam atmosfer, seperti karbon dioksida, uap air, metana, dan senyawa keluarga CFC, berlaku seperti kaca yang melewatkan sinar tampak dan ultraviolet tetapi menahan radiasi inframerah. Oleh karena itu, sebagian besar dari sinar matahari dapat mencapai permukaan bumi dan menghangatkan atmosfer dan permukaan bumi. Tetapi radiasi panas yang dipancarkan permukaan bumi akan terperangkap karena diserap oleh gas-gas rumah kaca.
Efek rumah kaca berfungsi sebagai selimut yang menjaga suhu permukaan bumi rata-rata 15˚C. Tanpa karbon dioksida dan uap air di atmosfer, suhu rata-rata permukaan bumi diperkirakan sekitar –25˚C. Jadi, jelaslah bahwa efek rumah kaca sangat penting dalam menentukan kehidupan di bumi. Akan tetapi, peningkatan kadar dari gas-gas rumah kaca dapat menyebabkan suhu permukaan bumi menjadi terlalu tinggi sehingga dapat mneyebabkan berbagai macam kerugian.

5. Hujan Asam
Air hujan biasanya sedikit bersifat asam (pH sekitar 5,7). Hal itu terjadi karena air hujan tersebut melarutkan gas karbon dioksida yang terdapat dalam udara, membentuk asam karbonat.
CO2(g) + H2O(l) → H2CO3(aq)
asam karbonat
Air hujan dengan pH kurang dari 5,7 disebut hujan asam.
a. Penyebab Hujan Asam
SO2(g) + H2O(l) → H2SO3(aq)
asam sulfit
SO3(g) + H2O(l) → H2SO4(aq)
asam sulfat
2NO2(g) + H2O(l) → HNO2(aq) + HNO3(aq)
asam nitrit asam nitrat
b. Masalah yang Ditimbulkan Hujan Asam
- Kerusakan Hutan
- Kematian Biota Air
- Kerusakan Bangunan
Bahan bangunan sedikit-banyak mengandung kalsuim karbonat. Kalsium karbonat larut dalam asam, maka dapat bereaksi.
CaCO3(s) + 2HNO3(aq) → Ca(NO3)2(aq) + H2O(l) + CO2(g)
c. Cara Menangani Hujan Asam
- Menetralkan asam
- Mengurangi emisi SO2
- Mengurangi emisi oksida nitrogen


KEGUNAAN HIDROKARBON DALAN KEHIDUPAN SEHARI-HARI

1.Bidang pangan
Jika sudah berbicara kegunaan hidrokarbon dalam bidang pangan, maka bahasanya bukan hidrokarbon murni lagi, tapi sedikit lebih luas yaitu karbohidrat. Karbohidrat merupakan senyawa karbon, hidrogen dan oksigen yang terdapat dalam alam. Banyak karbohidrat mempunyai rumus empiris CH2O.

Tipe karbohidrat
Monosakarida
Monosakarida adalah suatu karbohidrat yang tersederhana yang tidak dapat dihidrolisis menjadi molekul karbohidrat yang lebih kecil lagi.
Glukosa / gula anggur banyak terdapat dalam buah , jagung, dan madu.
Fruktosa terdapat bersama dengan glukosa dan sukrosa dalam buah-buahan dan madu.
Galaktosa, sumber dapat diperoleh dari laktosa yang dihidrolisis melalui pencernaan makanan kita.

Disakarida
Disakarida adalah suatu karbohidrat yang tersusun dari dua monosakarida.
Maltosa (glukosa + glukosa), tidak dapat difermentasi bakteri kolon dengan mudah, maka digunakan dalam makanan bayi, susu bubuk beragi (malted milk)
Laktosa (glukosa + galaktosa), terdapat dalam susu sapi dan 5-8% dalam susu ibu.
Sukrosa (glukosa + fruktosa), ialah gula pasir biasa. Bila dipanaskan akan membentuk gula invert berwarna coklat yang disebut karamel. Digunakan untuk pembuatan es krim, minuman ringan, dan permen.

Polisakarida
Polisakarida adalah suatu karbohidrat yang tersusun dari banyak monosakarida. Kegunaan hidrokarbon pada polisakarida dalam bidang pangan seperti beras, pati, jagung, dll.

2.Bidang sandang
Dari bahan hidrokarbon yang bisa dimanfaatkan untuk sandang adalah PTA (purified terephthalic acid) yang dibuat dari para-xylene dimana bahan dasarnya adalah kerosin (minyak tanah). Dari Kerosin ini semua bahannya dibentuk menjadi senyawa aromatik, yaitu para-xylene
Para-xylene ini kemudian dioksidasi menggunakan udara menjadi PTA (lihat peta proses petrokimia diatas). Dari PTA yang berbentuk seperti tepung detergen ini kemudian direaksikan dengan metanol menjadi serat poliester. Serat poli ester inilah yang menjadi benang sintetis yang bentuknya seperti benang. Hampir semua pakaian seragam yang adik-adik pakai mungkin terbuat dari poliester. Untuk memudahkan pengenalannya bisa dilihat dari harganya. Harga pakaian yang terbuat dari benang sintetis poliester biasanya relatif lebih murah dibandingkan pakaian yang terbuat dari bahan dasar katun, sutra atau serat alam lainnya. Kehalusan bahan yang terbuat dari serat poliester dipengaruhi oleh zat penambah (aditif) dalam proses pembuatan benang (saat mereaksikan PTA dengan metanol). Sebetulnya ada polimer lain yang juga dibunakan untuk pembuatan serat sintetis yang lebih halus atau lembut lagi. Misal serat untuk bahan isi pembalut wanita. Polimer tersebut terbuat dari polietilen.

3.Bidang papan
Bahan bangunan yang berasal dari hidrokarbon pada umumnya berupa plastik. Bahan dasar plastik hampir sama dengan LPG, yaitu polimer dari propilena, yaitu senyawa olefin / alkena dari rantai karbon C3. Dari bahan plastik inilah kemudian jadi macam, mulai dari atap rumah (genteng plastik), furniture, peralatan interior rumah, bemper mobil, meja, kursi, piring, dll.

4.Bidang seni
Untuk urusan seni, terutama seni lukis, peranan utama hidrokarbon ada pada tinta / cat minyak dan pelarutnya. Mungkin adik-adik mengenal thinner yang biasa digunakan untuk mengencerkan cat. Sementar untuk urusan seni patung banyak patung yang berbahan dasar dari plastik atau piala, dll. Hidrokarbon yang digunakan untuk pelarut cat terbuat dari Low Aromatic White Spirit atau LAWS merupakan pelarut yang dihasilkan dari Kilang PERTAMINA di Plaju dengan rentang titik didih antara 145o C — 195o C. Senyawa hidrokarbonyang membentuk pelarut LAWS merupakan campuran dari parafin, sikloparafin, dan hidrokarbon aromatik.

5.Bidang estetika
Sebetulnya seni juga sudah mencakup estetika. Tapi mungkin lebihluas lagi dengan penambahan kosmetika. Jadi bahan hidrokarbon yang juga digunakan untuk estetika kosmetik adalah lilin. Misal lipstik, waxing (pencabutan bulu kaki menggunakan lilin) atau bahan pencampur kosmetik lainnya, farmasi atau semir sepatu. Tentunya lilin untuk keperluan kosmetik spesifikasinya ketat sekali. Lilin parafin di Indonesia diproduksi oleh Kilang PERTAMINA UP- V Balikpapan melalui proses filtering press. Kualifikasi mutu lilin PERTAMINA berdasarkan kualitas yang berhubungan dengan titik leleh, warna dan kandungan minyaknya.

B.Industri Petrokimia
Kegunaan hidrokarbon pada bidang sandang, papan, seni, dan estetika dapat kita peroleh dari hasil industri petrokimia. Industri petrokimia adalah industri yang bahan industrinya berasal dari bahan bakar, minyak da gas bumi (gas alam).
Dewasa ini, puluhan ribu jenis bahan petrokimia telah dihasilkan. Bahan petrokimia tersebut dapat digolongkan kedalam plastik, serat sintetis, pestisida, detergen, pelarut, pupuk, berbagai jenis obat da vitamin.

Bahan dasar petrokimia
Pada umumnya, proses industri petrokimia melalui tiga tahapan, yaitu:
1.Mengubah minyak dan gas bumi menjadi bahan dasar petrokimia
2.Mengubah bahan dasar menjadi produk antara, dan
3.mengubah produk antara menjadi produk akhir.
Hampir semua produk petrokimia berasal dari tiga jenis bahan dasar, yaitu: olefin, aromatika, dan gas-sintesis (syn-gas).

a.Olefin (alkana-alkena)
Olefin merupakan bahan dasar petrokimia paling utama. Produksi olefin di seluruh dunia mencapai miliaran kg per tahun. Diantara olefin yang terpenting (paling banyak diproduksi) adalah etilena (etena), propilena (propena), butilena (butena), dan butadiene.

Olefin pada umumnya dibuat dari etana, propane, nafta, atau minyak gas (gas-oil) melalui proses perengkahan (cracking). Etana dan propane dapat berasal dari gas bumi atau dari fraksi minyak bumi; nafta berasal dari fraksi minyak bumi dengan molekul C-6 hingga C-10; sedangkan gas-oil berasal dari fraksi minyak bumi dengan molekul dari C-10 hingga C-30 atau C-30.

b.Aromatika
Aromatika adalah benzena dan turunannya. Aromatika dibuat dari nafta melalui proses yang disebut reforming. Di antara aromatic yang terpenting adalah benzene (C6H6, toluene (C6H5CH3), dan xilena (C6H­4(CH3)2). Ketiga jenis senyawa ini disebut BTX.
c.Gas sintetis
Gas sintesis (syn-gas) adalah campuran dari karbon monoksida (CO) dan hydrogen (H2). Syn-gas dibuat dari reaksi gas bumi atau LPG melalui proses yang disebut steam reforming atau oksidasi parsial. Reaksinya berlangsung sebagai berikut:
Steam reforming: campuran metana (gas bumi) dan uap air dipanaskan pada suhu dan tekanan tinggi dengan bantuan katalis (bahan pemercepat reaksi).
CH4(g) CO (g) + 3H2­ (g)
oksidasi parsial: metana direaksikan dengan sejumlah terbatas oksigen pada suhu dan tekanan tinggi.
2CH4 (g) 2CO (g) + 4 H2(g)

1.Petrokimia dari olefin
a. Beberapa diantara produk petrokimia yang berbahan dasar etilena sebagai berikut:
Polietilena
polietilena adalah plastic yang paling banyak diproduksi. Plastik polietilena antara lain digunakan sebagai kantong plastik dan plastik pembungkus / sampul. Pembentukan polietilena dari etilena merupakan reaksi polimerisasi.
nCH2 = CH­2 (-CH2-CH2-)n
Plastic polietilena (maupun plastic lainnya) yang kita kenal , selain mengandung poliertilena juga mengandung berbagai bahan tambahan, misalnya bahan pengisi, plasticer dan pewarna.
PVC
PVC atau polivinilklorida juga merupkan plastic, yang antara lain digunakan untuk membuat pipa (pralon) dan pelapis lantai.
PVC dibuat dari etilena melalui tiga tahapan reaksi sebagai berikut.
CH2 = CH2 + Cl2 CH2Cl – CH2Cl (adisi)
CH2Cl – CH2Cl CH2 = CHCL + HCl (pirolisis, pemanasan)
CH = CHCl (- CH2 – CHCl -)n (polimerisasi)

Etanol
Etanol adalah bahan yang sehari-hari biasa kita kenal sebagai alcohol. Etanol digunakan untuk bahan baker atau bahan antara untuk berbagai produk lain, misalnya asam asetat. Pembuatan etanol dari etilena melalui reaksi sebagai berikut.
CH2 = CH2 + H2O CH3 - CH2OH (adisi)
Etilena glikol atau glikol
Glikol digunakan sebagai bahan antibeku dalam radiator mobil di daerah beriklim dingin. Reaksi pembentukan glikol berlangsung sebagai berikut.
CH2 = CH2 + O2 CH2 - CH2 (adisi)
O
Etilena oksigen etilena oksida
CH2 – CH2 + H2O CH2OH – CH2OH
O
Etilena oksida etilena glikol
Serat atau bahan tekstil

b. beberapa diantara produk petrokimia yang berbahan dasar propilena sebagai berikut:
Polipropilena
Plastic prolpilena lebih kuat dibandingkan dengan plastic polietilena. Polipropilena antara lain digunakan untuk karung plastic dan tali plastic. Reaksi pembentukannya berlangsung sebagai berikut.

nCH3 – CH = CH2 ( - CH – CH2 - )n (polimerisasi)
CH3
­propilena polipropilena
Gliserol
Zat ini antara lain digunakan sebagai bahan kosmetik (pelembab), industri makanan, dan bahan peledak (nitrogliserin).
CH2OH CH2ONO2
CHOH CHONO2
CH2OH CH2ONO2
Gliserol nitrogliserol
Isopropyl alcohol
Zat ini digunakan sebagai bahan antara untuk berbagai produk petrokimia lainnya misalnya aseton (bahan pelarut, digunakan untuk melarutkan pelapis kuku /kutek)

c. Beberapa diantara produk petrokimia yang berbahan dasar butillena sebagai berikut:
karet sintetis, seperti SBR (styrene-butadiena-rubber)
nilon, yaitu nilon 6,6.

d. Produk petrokimia yang berbahan dasar isobutilena antara lain adalah MTBE (metal tertiary butyl eter). Zat ini digunakan untuk menaikka nilai oktan bensin. MTBE dibuat dari reaksi iso butilena dengan methanol.
CH3 CH3
CH3 – C = CH2 = CH3OH CH3 – C- O – CH3
CH3
isobutilena metanol MTBE
2.Petrokimia dari aromatika
Bahan aromatika yang terpenting adalah benzene, toluene, dan xilena (BTX). Pada industri petrokimia berbahan dasar benzene. Umumnya benzene diubah menjadi stirena, kumena, dan sikloheksana.
Stirena digunakan untuk membuat karet sintetis, seperti SBR dan polistirena.
Kumena digunakan untuk membuat fenol, selanjutnya fenol digunaka untuk membuat perekat dan resin.
Sikloheksana digunakan untuk membuat nilon, missal nilon 6,6 dan nilon 6.
Selain itu sebagian benzene digunakan sebagai bahan dasar untuk membuat detergen, missal LAS dan ABS.

Beberapa contoh produk petrokimia berbahan dasar toluene dan xilenaantara lain:
bahan peledak yaitu trinitrotoluene (TNT).
Asam tereftalat yang merupakan bahan untuk membuat serat seperti metiltereftalat.
3.petrokimia dari gas-sintetis (syn-gas)
Gas sintetis (syn-gas) merupaka campuran dari karbon monoksida (CO) dan hydrogen (H2). Berbagai contoh petrokimia syn-gas sebagai berikut:
ammonia (NH3)
ammonia dibuat dari nitrogen dan hydrogen menurut reaksi berikut ini:
N2 (g) + 3H2(g) 2H3(g)
Pada industri petrokimia, gas nitrogen diperoleh dari udara, sedangkan gas hydrogen dari syn-gas. Sebagian besar produksi ammonia digunakan untuk membuat pupuk seperti urea [CO(NH2­)2], ZA [(NH4)2SO4], dan ammonium nitrat (NH­4NO3). Sebagian lainnya digunakan untuk membuat berbagai senyawa nitrogen lainnya, seperti asam nitrat (HNO3) da sebagai bahan untuk membuat resin dan plastic.
urea [CO(NH2­)2]
urea dibuat dari ammonia da gas karbon dioksida melalui 2 tahap reaksi berikut:
CO2(g) + 2NH3(g) NH2CO2NH4(s)
NH2CO2NH4(s) CO(NH2)2 (s) + H2O (g)
Sebagian besar urea digunakan sebagai pupuk. Kegunaan yang lain yaitu untuk makanan ternak, industri perekat, plastic ,dan resin.
methanol (CH3OH)
Methanol dibuat dari syn-gas melalui pemanasan pada suhu dan tekanan tinggi dengan bantuan katalis.
CO(g) + 2H2(g) CH3OH
Sebagian methanol diubah menjadi formaldehida. Sebagian lain digunakan untuk membuat serat, dan campuran bahwa bakar.
formaldehida (HCHO)
formaldehida dibuat melalui oksidasi methanol dengan bantuan katalis.
CH3OH(g) HCHO(g) + H2(g)
formaldehida
Larutan formaldehida dalam air dikenal dengan nama formalin. Formalin digunakan untuk mengawetkan preparat biologi (termasuk mayat). Akan tetapi, penggunaan utama dari formadehida adalah untuk membuat resin urea- formaldehida dan lem. Lem formaldehida banyak digunakan dalam industri kayu lapis.





DAFTAR PUSTAKA

ü  http://ariffadholi.blogspot.com/2010/10/kegunaan-hidrokarbon.html

0 komentar:

Silahkan Beri Komentar

Template by : kendhin x-template.blogspot.com